Informative Sensing
نویسندگان
چکیده
Compressed sensing is a recent set of mathematical results showing that sparse signals can be exactly reconstructed from a small number of linear measurements. Interestingly, for ideal sparse signals with no measurement noise, random measurements allow perfect reconstruction while measurements based on principal component analysis (PCA) or independent component analysis (ICA) do not. At the same time, for other signal and noise distributions, PCA and ICA can significantly outperform random projections in terms of enabling reconstruction from a small number of measurements. In this paper we ask: given the distribution of signals we wish to measure, what are the optimal set of linear projections for compressed sensing? We consider the problem of finding a small number of linear projections that are maximally informative about the signal. Formally, we use the InfoMax criterion and seek to maximize the mutual information between the signal, x, and the (possibly noisy) projection y = Wx. We show that in general the optimal projections are not the principal components of the data nor random projections, but rather a seemingly novel set of projections that capture what is still uncertain about the signal, given the knowledge of distribution. We present analytic solutions for certain special cases including natural images. In particular, for natural images, the near-optimal projections are bandwise random, i.e., incoherent to the sparse bases at a particular frequency band but with more weights on the low-frequencies, which has a physical relation to the multi-resolution representation of images.
منابع مشابه
Remote sensing application in evaluation of soil characteristics in desert areas
Soil is one of the most important natural resources covering a large area of the land surface. Soil plays a vital role in biosphere processes, such as energy balance, hydrology, biochemistry, and biological productivity. It supports plants that supply foods, fibers, drugs, and some other human needs. Conversely, desert regions include about one third of earth lands and these regions have increa...
متن کاملMulti-robot active sensing of non-stationary gaussian process-based environmental phenomena
A key challenge of environmental sensing and monitoring is that of sensing, modeling, and predicting large-scale, spatially correlated environmental phenomena, especially when they are unknown and non-stationary. This paper presents a decentralized multi-robot active sensing (DEC-MAS) algorithm that can efficiently coordinate the exploration of multiple robots to gather the most informative obs...
متن کاملMulti-robot active sensing of non-stationary Gaussian process-based environmental phenomena Citation
A key challenge of environmental sensing and monitoring is that of sensing, modeling, and predicting large-scale, spatially correlated environmental phenomena, especially when they are unknown and non-stationary. This paper presents a decentralized multi-robot active sensing (DEC-MAS) algorithm that can efficiently coordinate the exploration of multiple robots to gather the most informative obs...
متن کاملTheoretical perspectives on active sensing
A key component of interacting with the world is how to direct ones’ sensors so as to extract task-relevant information — a process referred to as active sensing. In this review, we present a framework for active sensing that forms a closed loop between an ideal observer, that extracts task-relevant information from a sequence of observations, and an ideal planner which specifies the actions th...
متن کاملRemote sensing image segmentation by active queries
Active learning deals with developing methods that select examples that may express data characteristics in a compact way. For remote sensing image segmentation, the selected samples are the most informative pixels in the image so that classifiers trained with reduced active datasets become faster and more robust. Strategies for intelligent sampling have been proposed with model-based heuristic...
متن کاملMulti-robot informative path planning for active sensing of environmental phenomena: a tale of two algorithms
A key problem of robotic environmental sensing and moni-toring is that of active sensing: How can a team of robotsplan the most informative observation paths to minimizethe uncertainty in modeling and predicting an environmen-tal phenomenon? This paper presents two principled ap-proaches to efficient information-theoretic path planning basedon entropy and mutual informat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0901.4275 شماره
صفحات -
تاریخ انتشار 2009